宜城教育365速发国际靠谱么_365bet亚洲官方网址_预付365商城下载网www.bjtlcd.com 一、垂径定理及其推论
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 (1)定理中的直径过圆心即可,可以是直径、半径、过圆心的直线或线段; (2)此定理是证明等线段、等角、垂直的主要依据,同时也为圆的有关计算提供了方法和依据。
二、垂径定理的推论: (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。 推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧 推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧 推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧 推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 推论四:在同圆或者等圆中,两条平行弦所夹的弧相等 (证明时的理论依据就是上面的五条定理) 但是在做不需要写证明过程的题目中,可以用下面的方法进行判断: 一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论 1.平分弦所对的优弧 2.平分弦所对的劣弧 (前两条合起来就是:平分弦所对的两条弧) 3.平分弦 (不是直径) 4.垂直于弦 5.经过圆心 宜城教育365速发国际靠谱么_365bet亚洲官方网址_预付365商城下载网www.bjtlcd.com |