<legend id="h4sia"></legend><samp id="h4sia"></samp>
<sup id="h4sia"></sup>
<mark id="h4sia"><del id="h4sia"></del></mark>

<p id="h4sia"><td id="h4sia"></td></p><track id="h4sia"></track>

<delect id="h4sia"></delect>
  • <input id="h4sia"><address id="h4sia"></address>

    <menuitem id="h4sia"></menuitem>

    1. <blockquote id="h4sia"><rt id="h4sia"></rt></blockquote>
      <wbr id="h4sia">
    2. <meter id="h4sia"></meter>

      <th id="h4sia"><center id="h4sia"><delect id="h4sia"></delect></center></th>
    3. <dl id="h4sia"></dl>
    4. <rp id="h4sia"><option id="h4sia"></option></rp>

        安庆教育网
        3.2立体几何中的向量方法课件_立体几何中的向量方法知识点详细信息
        宜城教育365速发国际靠谱么_365bet亚洲官方网址_预付365商城下载网www.bjtlcd.com3.2立体几何中的向量方法(三)课件_立体几何中的向量方法知识点平行与垂直的证明立体几何一般以两问出现的较多,其中第一问相对较多出现的是平行和垂直的证明,而浙江卷又以垂直出现的可能性更大。当然垂直证明一般难度大于平行的证明。专题能力训练15立体几何中的向量方法能力突破训练1.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.2.如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1)求证:AO⊥BE;(2)求二面角F-AE-B的余弦值;(3)若BE⊥平面AOC,求a的值.3.(2017山东,理17)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.5.(2017北京,理16)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.6.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=.(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.思维提升训练7.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起成如图乙所示的四棱锥P-OBCD,使得PC=,E是线段PB上一动点.(1)证明:DE和PC不可能垂直;(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.8.如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,∠PAD=90°,且PA=AD=2;E,F,G分别是线段PA,PD,CD的中点.(1)求证:PB∥平面EFG.(2)求异面直线EG与BD所成的角的余弦值.(3)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为?若存在,求出CQ的值;若不存在,请说明理由.参考答案专题能力训练15立体几何中的向量方法能力突破训练1.解依题意,OF⊥平面ABCD,如图,以O为原点,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(-1,1,0),B(-1,-1,0),C(1,-1,0),D(1,1,0),E(-1,-1,2),F(0,0,2),G(-1,0,0).(1)证明依题意,=(2,0,0),=(1,-1,2).设n1=(x,y,z)为平面ADF的法向量,则不妨设z=1,可得n1=(0,2,1),又=(0,1,-2),可得n1=0,又因为直线EG?平面ADF,所以EG∥平面ADF.(2)易证=(-1,1,0)为平面OEF的一个法向量.依题意,=(1,1,0),=(-1,1,2).设n2=(x,y,z)为平面CEF的法向量,则不妨设x=1,可得n2=(1,-1,1).因此有cos<,n2>==-,于是sin<,n2>=所以,二面角O-EF-C的正弦值为(3)由AH=HF,得AH=AF.因为=(1,-1,2),所以,进而有H,从而,因此cos<,n2>==-所以,直线BH和平面CEF所成角的正弦值为2.(1)证明因为△AEF是等边三角形,O为EF的中点,所以AO⊥EF.又因为平面AEF⊥平面EFCB,AO?平面AEF,所以AO⊥平面EFCB,所以AO⊥BE.(2)解取BC中点G,连接OG.由题设知EFCB是等腰梯形,所以OG⊥EF.由(1)知AO⊥平面EFCB,又OG?平面EFCB,所以OA⊥OG.如图建立空间直角坐标系O-xyz,则E(a,0,0),A(0,0,a),B(2,(2-a),0),=(-a,0,a),=(a-2,(a-2),0).设平面AEB的法向量为n=(x,y,z),则令z=1,则x=,y=-1.于是n=(,-1,1).平面AEF的法向量为p=(0,1,0).所以cos==-由题知二面角F-AE-B为钝角,所以它的余弦值为-(3)解因为BE⊥平面AOC,所以BE⊥OC,即=0.因为=(a-2,(a-2),0),=(-2,(2-a),0),所以=-2(a-2)-3(a-2)2.由=0及0<>=因此所求的角为60°.4.解以A为原点,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故=(0,1,1),=(a,0,1),(1)证明=-0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP∥平面B1AE,此时=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).∵n⊥平面B1AE,∴n,n,得取x=1,得平面B1AE的一个法向量n=要使DP∥平面B1AE,只要n,有-az0=0,解得z0=又DP?平面B1AE,∴存在点P,满足DP∥平面B1AE,此时AP=5.(1)证明设AC,BD交点为E,连接ME.因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)解取AD的中点O,连接OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP?平面PAD,所以OP⊥平面ABCD.因为OE?平面ABCD,所以OP⊥OE.因为ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则令x=1,则y=1,z=于是n=(1,1,),平面PAD的法向量为p=(0,1,0).所以cos=由题知二面角B-PD-A为锐角,所以它的大小为(3)解由题意知M,C(2,4,0),设直线MC与平面BDP所成角为α,则sinα=|cos|=所以直线MC与平面BDP所成角的正弦值为6.(1)证明因为AB是直径,所以BC⊥AC.因为CD⊥平面ABC,所以CD⊥BC.因为CD∩AC=C,所以BC⊥平面ACD.因为CD∥BE,CD=BE,所以四边形BCDE是平行四边形,所以BC∥DE,所以DE⊥平面ACD.因为DE?平面ADE,所以平面ADE⊥平面ACD.(2)解依题意,EB=AB×tan∠EAB=4=1.由(1)知VC-ADE=VE-ACD=S△ACD×DE=AC×CD×DE=AC×BC(AC2+BC2)=AB2=,当且仅当AC=BC=2时等号成立.如图,建立空间直角坐标系,则D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),则=(-2,2,0),=(0,0,1),=(0,2,0),=(2,0,-1).设平面DAE的法向量为n1=(x,y,z),则取n1=(1,0,2).设平面ABE的法向量为n2=(x,y,z),则取n2=(1,1,0),所以cos=可以判断与二面角D-AE-B的平面角互补,所以二面角D-AE-B的余弦值为-思维提升训练7.解如题图甲所示,因为BO是梯形ABCD的高,∠BAD=45°,所以AO=OB.因为BC=1,OD=3OA,可得OD=3,OC=,如题图乙所示,OP=OA=1,OC=,PC=,所以有OP2+OC2=PC2.所以OP⊥OC.而OB⊥OP,OB⊥OD,即OB,OD,OP两两垂直,故以O为原点,建立空间直角坐标系(如图),则P(0,0,1),C(1,1,0),D(0,3,0),(1)设E(x,0,1-x),其中0≤x≤1,所以=(x,-3,1-x),=(1,1,-1).假设DE和PC垂直,则=0,有x-3+(1-x)·(-1)=0,解得x=2,这与0≤x≤1矛盾,假设不成立,所以DE和PC不可能垂直.(2)因为PE=2BE,所以E设平面CDE的一个法向量是n=(x,y,z),因为=(-1,2,0),,所以n=0,n=0,即令y=1,则n=(2,1,5),而=(0,3,-1),所以|cos<,n>|=所以PD与平面CDE所成角的正弦值为8.解∵平面PAD⊥平面ABCD,且∠PAD=90°,∴PA⊥平面ABCD,而四边形ABCD是正方形,即AB⊥AD.故可建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).(1)证明:=(2,0,-2),=(0,-1,0),=(1,1,-1),设=s+t,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),解得s=t=2,=2+2又不共线,共面.∵PB?平面EFG,∴PB∥平面EFG.(2)=(1,2,-1),=(-2,2,0),=(1,2,-1)·(-2,2,0)=1×(-2)+2×2+(-1)×0=2.又∵||=,||==2,∴cos<>=因此,异面直线EG与BD所成的角的余弦值为(3)假设在线段CD上存在一点Q满足题设条件,令CQ=m(0≤m≤2),则DQ=2-m,∴点Q的坐标为(2-m,2,0),=(2-m,2,-1).而=(0,1,0),设平面EFQ的法向量为n=(x,y,z),则令x=1,则n=(1,0,2-m),∴点A到平面EFQ的距离d=,即(2-m)2=,∴m=或m=(不合题意,舍去),故存在点Q,当CQ=时,点A到平面EFQ的距离为对于这一块内容,我们简单介绍下。我制作了一张平行互推图和垂直互推图。大家可以看一下。平行证明垂直证明平行与垂直的证明,我们放在下一块求空间角时,分析大题目时一起分析。第二部分:求空间角立体几何的第二问基本都以求空间角的形式出现求空间角主要分为三块内容:异面直线所成的角(线线角),线与面所成的角(线面角),面与面所成的角(二面角)。首先,我们看一下考纲里面对空间角的要求:A.理解直线与平面所成角的概念,了解二面角及其平面角的概念.B.了解求两直线夹角、直线与平面所成角、二面角的向量方法.接下来我们分三点来分析空间角的求法:1)异面直线所成的角(线线角)定义:已知两条异面直线,经过空间任一点作直线,所成的角的大小与点的选择无关,把所成的锐角(或直角)叫异面直线所成的角(或夹角).异面直线所成的角求异面直线所成的角的方法:1):平移,平移后使两条直线相交,求角;2):向量法:建立坐标系,请求两条直线的坐标,利用公式异面直线所成的角向量公式典例分析例1.在正三棱锥S-ABC中,E为SA的中点,F为△ABC的中心,SA=BC=2,则异面直线EF与AB所成的角是()(A)30°(B)45°(C)60°(D)90°例1答案例2.如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=根号3,∠BAD=120.(1)求异面直线A1B与AC1所成角的余弦值;例2图2)线与面所成的角(线面角)1.线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角2.求线面角的一般步骤:(1)先找斜足(2)经过斜线上一点作面的垂线(一般都是另一个端点),即作出垂足,连接斜足和垂足,找出线面角。注意:做垂线时都是做线的垂线,然后证明是面的垂线。3.向量法:线面角例3.例33)面与面所成的角(二面角)(1)过二面角的棱上的一点O分别在两个半平面内作棱的两条垂线OA,OB,角AOB则叫做二面角的平面角二面角的平面角的特点:1)角的顶点在棱上2)角的两边分别在两个面内3)角的边都要垂直于二面角的棱。例4例4答案 宜城教育365速发国际靠谱么_365bet亚洲官方网址_预付365商城下载网www.bjtlcd.com
        3.2立体几何中的向量方法课件_立体几何中的向量方法知识点
        宜城教育365速发国际靠谱么_365bet亚洲官方网址_预付365商城下载网免费提供课件、试题、教案、学案、教学反思设计等备课365速发国际靠谱么_365bet亚洲官方网址_预付365商城下载。数百万365速发国际靠谱么_365bet亚洲官方网址_预付365商城下载,无须注册,天天更新!


        没有任何图片365速发国际靠谱么_365bet亚洲官方网址_预付365商城下载
        宜城教育365速发国际靠谱么_365bet亚洲官方网址_预付365商城下载网
        免责声明 :本站365速发国际靠谱么_365bet亚洲官方网址_预付365商城下载版权归原着作人所有,如果我们转载的作品侵犯了您的权利,请通知我们,我们会及时删除。
        宜城教育365速发国际靠谱么_365bet亚洲官方网址_预付365商城下载网主办 站长:此地宜城 邮箱:yrqsxp@163.com  QQ:290085779